Special Effect Glazes

Linda Bloomfield

With photographs by Henry Bloomfield
Contents

Acknowledgements 7
Introduction 9

Section 1. Glaze principles and application 12
1 Understanding glazes 13
2 Glaze materials and minerals 17
3 Colouring glazes 25
4 Impurities and variation in materials 35
5 Stability and durability 43
6 Creating and testing glazes 51
7 Glaze mixing and application 59
8 Firing 65
9 Glaze ‘defects’ 69

Section 2. Special effect glazes 73
10 Special effects: the chemistry 75
11 Crackle glazes 81
12 Ash glazes 89
13 Celadon and Copper red glazes 95
14 Drippy glazes and Chun glazes 101
15 Crystalline glazes 109
16 Shrink and Crawl: Lichen glazes 117
17 Volcanic, Lava or Crater glazes 125
18 Spotted glazes 135
19 Metallic glazes 141
20 Layering glazes 145

Conclusion 147
References 148
Bibliography 148
Appendices:
1. Glaze materials UK:US materials substitutions 149
2. Orton cone temperatures 150
3. Ceramic materials, chemical formula and molecular weight 151
4. Limits for stable glazes 153
5. Periodic table of elements 154
6. Materials analysis for UK frits, clays and feldspars 156
7. Materials analysis for US frits, clays and feldspars 157
Suppliers 158
Laboratories for leach testing of glazes 159
Health and Safety 159
Index 160

HERBERT PRESS
Bloomsbury Publishing Plc
50 Bedford Square, London, WC1B 3DP, UK

BLOOMSBURY, HERBERT PRESS and the Herbert Press logo are trademarks of Bloomsbury Publishing Plc

First published in Great Britain in 2020
Copyright © Linda Bloomfield, 2020
Linda Bloomfield has asserted her right under the Copyright, Designs and Patents Act, 1988, to be identified as Author of this work

For legal purposes the Acknowledgements on p.7 constitute an extension of this copyright page

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system, without prior permission in writing from the publishers

Bloomsbury Publishing Plc does not have any control over, or responsibility for, any third-party websites referred to or in this book.
All internet addresses given in this book were correct at the time of going to press. The author and publisher regret any inconvenience caused if addresses have changed or sites have ceased to exist, but can accept no responsibility for any such changes

A catalogue record for this book is available from the British Library
ISBN: 978-1-912217-87-8
2 4 6 8 10 9 7 5 3 1

Designed and typeset in Rotis Semi Sans by Plum5 Limited
Edited by Alison Stace
Printed and bound in China by Toppan Leefung Printing

To find out more about our authors and books visit: www.bloomsbury.com
and sign up for our newsletters

Acknowledgements 7
Introduction 9

Section 1. Glaze principles and application 12
1 Understanding glazes 13
2 Glaze materials and minerals 17
3 Colouring glazes 25
4 Impurities and variation in materials 35
5 Stability and durability 43
6 Creating and testing glazes 51
7 Glaze mixing and application 59
8 Firing 65
9 Glaze ‘defects’ 69

Section 2. Special effect glazes 73
10 Special effects: the chemistry 75
11 Crackle glazes 81
12 Ash glazes 89
13 Celadon and Copper red glazes 95
14 Drippy glazes and Chun glazes 101
15 Crystalline glazes 109
16 Shrink and Crawl: Lichen glazes 117
17 Volcanic, Lava or Crater glazes 125
18 Spotted glazes 135
19 Metallic glazes 141
20 Layering glazes 145

Conclusion 147
References 148
Bibliography 148
Appendices:
1. Glaze materials UK:US materials substitutions 149
2. Orton cone temperatures 150
3. Ceramic materials, chemical formula and molecular weight 151
4. Limits for stable glazes 153
5. Periodic table of elements 154
6. Materials analysis for UK frits, clays and feldspars 156
7. Materials analysis for US frits, clays and feldspars 157
Suppliers 158
Laboratories for leach testing of glazes 159
Health and Safety 159
Index 160
Crystalline glazes can be made by adding titanium dioxide or rutile to a glaze which is relatively low in clay (with less than 5% clay). On the Stull map below, crystalline glazes are shown to form in the range 0.05–0.4 molecules alumina in the unity molecular formula. This is a wider range than for zinc silicate macro-crystalline glazes, which contain very little alumina. Too much alumina in the glaze tends to suppress crystal growth, although it is possible to make micro-crystalline matt glazes with a higher clay content. Small, round crystals form when calcium and magnesium are added to the glaze in the form of dolomite, particularly when zinc oxide is also added. Larger crystals grow in zinc silicate glazes, which are cooled very slowly by holding them at 1060°C (1940°F) for several hours at the end of firing. As these glazes are low in clay, they can be very runny, so care should be taken not to apply them too thickly on the outside of pots.

Crystalline glazes are found in the pale pink area in the bottom left-hand corner. Macro-crystalline glazes are in the dark pink area. The numbers refer to the glaze recipes on pp 112–14.
Let us look at why crystals often form in glazes which are low in alumina and contain excess calcia or magnesia. The lack of alumina in the glaze means that it is very fluid in the melt, and atoms can move around easily. Only a limited amount of calcium can dissolve in the glaze. The silica in the glaze reacts with the excess calcium to form calcium silicate crystals, which grow in the molten glaze if it is cooled slowly, giving time for the atoms to arrange themselves in a crystal structure. The calcium silicate molecules first aggregate into chains, then double chains, then sheet structures and finally three-dimensional framework structures such as anorthite (calcium feldspar). The crystals can include wollastonite (calcium silicate CaSiO$_3$), diopside (CaMgSi$_2$O$_6$) and enstatite (magnesium silicate Mg$_2$Si$_2$O$_6$). The latter two are types of pyroxene, a chain silicate. The glaze becomes devitrified and is no longer transparent. There can be a few crystals floating in a matrix of glossy glaze, or the crystals can cover the entire surface to form a matt glaze if the kiln is cooled slowly. Barium, strontium and zinc will also form crystals in a similar way.

Macro-crystalline glazes with very large crystals can be made from zinc silicate if held for several hours during cooling at around 1050–1100°C (1922–2012°F) to allow time for the crystals to grow while the glaze is still molten. The zinc silicate mineral Zn$_2$SiO$_4$ is called willemite. Depending on the holding temperature, its crystals can be acicular, needle-shaped or spherulite, star-shaped and can be coloured with cobalt, copper or nickel. The crystals selectively take up certain colouring oxides in preference to others. For example, cobalt will colour the crystals blue, nickel will give steel blue and manganese will give pink, though only if there is no cobalt or nickel present. Manganese and copper oxide will usually colour the background if there are other colouring oxides present. The rare earth oxides erbium, neodymium and praseodymium can be used to colour crystal glazes. Molybdenum and tungsten are used to get iridescent metallic crystals. Titanium and rutile are used to seed crystals. In a molten glaze, they initially form zinc titanate ZnTiO$_3$ or calcium titanate CaTiO$_3$ from which other crystals can grow on cooling. At stoneware temperatures, mullite in the glaze-body interface will act as a seed for crystals, as will the addition of wood ash or bone ash to the glaze. Aventurine glazes are glittery glazes with tiny sparkling crystals containing either iron oxide (for gold–brown), chromium oxide (green) or uranium oxide (yellow–orange).
Special Effect Glazes

1. Matt crystalline glaze, cone 8, 1260°C (2300°F). Glaze 3 on the Stull map.
 - Soda feldspar 41
 - Dolomite 22
 - Quartz 11
 - China clay 18
 - Whiting 3
 - Zinc oxide 5
 - Cobalt oxide 0.3
 - Nickel oxide 0.9

2. Blue and pink crystalline matt glaze, cone 8, 1260°C (2300°F).
 - Soda feldspar 41
 - Dolomite 22
 - Quartz 11
 - China clay 18
 - Whiting 3
 - Zinc oxide 5
 - Tin oxide 4
 - Cobalt oxide 0.75

 - Potash feldspar 63
 - Dolomite 16
 - Zinc oxide 17
 - Rutile 3
 - Cobalt oxide 1

Recipe numbers correspond to numbers marked on Stull map on p.109.

 - Various colouring oxides can be added, such as cobalt or copper oxide. The crystals are often a different colour to the background. Matt at cone 6, more glossy and runny at cone 8.
 - Soda feldspar 42
 - Dolomite 22
 - Quartz 22
 - China clay 6
 - Whiting 3
 - Zinc oxide 5
 - Copper oxide 1

 - Soda feldspar 42
 - Dolomite 22
 - Quartz 22
 - China clay 6
 - Whiting 3
 - Zinc oxide 5
 - Tin oxide 4
 - Cobalt oxide 0.75

4. Semi-matt crystal glaze (Lasse Östman) cone 8, 1260°C (2300°F), 45-minute soak. Glaze 4 on the Stull map.
 - Glossy background with matt crystals.
 - Potash feldspar 28
 - Quartz 32
 - Zinc oxide 19
 - Dolomite 3
 - Strontium carbonate 3
 - Lithium carbonate 7
 - China clay 3
 - Titanium dioxide 4
 - Nickel oxide 0.5

Crystalline glazes