CLAY
A Studio Handbook
SECOND EDITION
Vince Pitelka
Beth Cavener’s *The Question that Devours*, 2015, 64 inches in height, stoneware, modeled solid and carved hollow, paint applied after firing. Cavener writes: “On the surface, these figures are simply feral and domestic individuals suspended in a moment of tension. Beneath the surface, they embody the consequences of human fear, apathy, aggression, and misunderstanding.” Photo: Beth Cavener
Contents

Introduction ... ix

Chapter 1: Clay and Claybodies .. 1
The Nature of Clay ... 1
The Nature and Structure of Clay and Clay Bodies 2
 What is Clay?
 What Makes Clay Behave the Way it does in the Plastic State?
 Why Do Different Clays Behave Differently?
 Effects of Particle Size on Clay Performance
 Green Packing Density and the Room Full of Basketballs
 Platelets and Directional Grain Structure in Plastic Clay
 Why Does Clay Become Hard and Permanent in Firing?
 The Ceramic Continuum: From Glass to Brick
 What is Glass?
 Atomic Vibration and the Melting of Solids
 Fluxes and Bonding Strength
 Stiffeners, Glass, and Clay: What Differentiates Clay from Glass?
 Sintering and Vitrification
 Crystal Growth in Clay
Classification of Clays .. 8
 Primary and Secondary Clays
 Types of Naturally Occurring Clays
Clay Bodies and Components ... 10
 Remember Green Packing Density and Distribution of Particle Sizes
 Non-Plastic Components of Clay Bodies
Common Types of Clay Bodies ... 10
Designing Clay Bodies for Specific Applications and Firing Processes ... 13
 Clay Bodies for Architectural Clay work
Deflocculation and Flocculation 16
The Effects of Aging on Clay Bodies 17
 Water of Plasticity Test
 Actual Plasticity
 Shrinkage
 Porosity/Absorption
Mixing and Recycling Clay .. 18
 Start with a Good Clay Body Recipe
 Featuring Proper GPD
 Making Plastic Clay—Mechanical Mixers and Other Options
 Always Add the Fine Particles First
 Making the Most of Mechanical
Shear Mixers—Wetting the Particles
The Slurry Method—An Inexpensive and Highly Efficient Clay Mixing Option
Stiffening Slurry in Linear Mounds
Stiffening on Plaster Slabs
Stiffening in Canvas Bags
Stiffening in a Temporary Brick Basin
Stiffening in Plastic Buckets
Advantages of a De-airing Pugmill
Making Paper Clay

Chapter 2: Handbuilding .. 22
Clay Preparation: Clay Consistency and Wedging 23
Ram’s Head Wedging
Cone or Spiral Wedging
Stack and Slam Wedging
Preparing Large Amounts of Clay

Handbuilding: General Guidelines and Suggestions 26
To Sign or Not to Sign .. 29
Making Pinch Forms .. 29

Coil Construction .. 31
Beginning Round Bottom Coil Pots With or Without a Mold
Expanding and Shaping a Coil Form with the Rib and Hand Method
Leaving a Partially Completed Coil Form to Stiffen Before Adding More Height
Resuming Coil Construction After the Lower Portion has Stiffened to Leatherhard
Variations on Coiling
Controlling Drying As You Proceed
Closing the Rim of a Coil Form
Using the Paddle and Anvil Methods to Resolve Shape and Surface
Coil Built Sculpture

Slab Construction .. 40
Rolling Slabs: Platelet Grain Structure and Clay Memory
Rolling Out Slabs by Hand with a Rolling Pin
Alternatives to Canvas Texture
Decorating Flat Slabs
Before Cutting and Assembly
Soft Slab Construction
Soft Slab Cylinders and Cones
Handles for Slab Built Vessels
Cutting Darts
Soft Slab Closed Forms and Covered Boxes
Slumped Slab Lids for Soft Slab and Stiff Slab Vessels
Slab Built Dinnerware: Designing Handbuilt Plates and Bowls
Forming Plates, Platters, Bowls, and Trays with Slump Molds
Making Soft Slab Tableware Using Rigid Foam Board Slump Molds
Making Poster Board Slab Templates and Foam Board Slump/Hump Molds
Using Foam Slump/Hump Molds;
Making Concentric Template Sets
Slumping Decorated Slabs
Adding a Footring
Finishing the Rim of Slab Forms
Tubular Components and Spouts for Slab Vessels or Sculpture
Soft Slab Sculpture
Stiff Slab Construction
Stiff Slab Covered Vessels
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feet on Altered Forms</td>
<td>99</td>
</tr>
<tr>
<td>Throwing and Using Closed Forms</td>
<td></td>
</tr>
<tr>
<td>Throwing Hollow Ring Forms</td>
<td>101</td>
</tr>
<tr>
<td>Using Paddling, Paddle-and-Anvil, and Rib-and-Hand Methods on Thrown Forms</td>
<td>101</td>
</tr>
<tr>
<td>Very Large Pots—Coil Throwing and Multi-Piece Vessels</td>
<td>101</td>
</tr>
<tr>
<td>Drying Thrown Forms</td>
<td>102</td>
</tr>
<tr>
<td>Finishing the Bottoms of Thrown Forms</td>
<td>103</td>
</tr>
<tr>
<td>Designing, Making and Applying Handles</td>
<td>106</td>
</tr>
<tr>
<td>General Guidelines for Making Better Handles</td>
<td>110</td>
</tr>
<tr>
<td>Chapter 4: Plaster Working, Mold Making, and Slip Casting</td>
<td>114</td>
</tr>
<tr>
<td>Plaster in Drainpipes: A Plumbing Nightmare—How to Clean Up</td>
<td>116</td>
</tr>
<tr>
<td>Plaster and Lime Pops—Avoid Contaminating Your Clay</td>
<td>116</td>
</tr>
<tr>
<td>Measuring, Mixing, and Pouring Plaster</td>
<td>116</td>
</tr>
<tr>
<td>The Use of Cottles as Casting Forms</td>
<td>118</td>
</tr>
<tr>
<td>Using Strips of Sheet Metal or Linoleum as Casting Forms</td>
<td>119</td>
</tr>
<tr>
<td>The Concept of Draft</td>
<td>119</td>
</tr>
<tr>
<td>Mold-Release Agents (Parting Agents)</td>
<td>119</td>
</tr>
<tr>
<td>Drying of Molds</td>
<td>119</td>
</tr>
<tr>
<td>Making and Using Plaster Press Molds</td>
<td>120</td>
</tr>
<tr>
<td>Making Slip Casting Molds</td>
<td>120</td>
</tr>
<tr>
<td>Open Pour Slip Casting Molds</td>
<td></td>
</tr>
<tr>
<td>Multi-piece Slip-Casting Molds</td>
<td></td>
</tr>
<tr>
<td>Multi-piece Flick/Smear Molds from Plastic Clay Prototypes</td>
<td>121</td>
</tr>
<tr>
<td>Multipiece Molds from Rigid (Not Plastic Clay) Prototypes</td>
<td>122</td>
</tr>
<tr>
<td>Mixing and Pouring Casting Slip.</td>
<td>124</td>
</tr>
<tr>
<td>Pouring Your Molds</td>
<td></td>
</tr>
<tr>
<td>Chapter 5 Surface Decoration on Greenware</td>
<td>126</td>
</tr>
<tr>
<td>Decorative Effects during Forming</td>
<td>127</td>
</tr>
<tr>
<td>Impressed Decoration</td>
<td>127</td>
</tr>
<tr>
<td>Making and Using Bisque Stamps and Rollers</td>
<td>128</td>
</tr>
<tr>
<td>Bisque Stamps</td>
<td></td>
</tr>
<tr>
<td>Making a “Chop”</td>
<td></td>
</tr>
<tr>
<td>Using Small Bisque Stamps for Impressing Registration Marks</td>
<td></td>
</tr>
<tr>
<td>Bisque Rollers or Roulettes</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Subtractive Methods</td>
<td>130</td>
</tr>
<tr>
<td>Additive Methods</td>
<td>132</td>
</tr>
<tr>
<td>Polishing</td>
<td>132</td>
</tr>
<tr>
<td>Burnishing</td>
<td></td>
</tr>
<tr>
<td>Slips and Slip Decoration</td>
<td>133</td>
</tr>
<tr>
<td>How to Select a Slip Formula</td>
<td></td>
</tr>
<tr>
<td>Flocculation and Deflocculation of Decorating Slips</td>
<td></td>
</tr>
<tr>
<td>Mixing a Flocculated or Deflocculated Slip</td>
<td></td>
</tr>
<tr>
<td>Mixing a Slip with a Flocculant</td>
<td></td>
</tr>
<tr>
<td>Desired Consistency of a Slip Mixture</td>
<td></td>
</tr>
<tr>
<td>Adding Colorants to White Slip</td>
<td></td>
</tr>
<tr>
<td>Slip Colors from Ceramic Oxides</td>
<td></td>
</tr>
<tr>
<td>Slip-Decorating Techniques</td>
<td>137</td>
</tr>
<tr>
<td>Polychrome Slip Painting</td>
<td></td>
</tr>
<tr>
<td>Mishima (Slip Inlaying)</td>
<td></td>
</tr>
<tr>
<td>Wax Mishima</td>
<td></td>
</tr>
<tr>
<td>Sgraffito</td>
<td></td>
</tr>
<tr>
<td>Slip Trailing</td>
<td></td>
</tr>
<tr>
<td>Feather Combing</td>
<td></td>
</tr>
<tr>
<td>Slip Marbling</td>
<td></td>
</tr>
<tr>
<td>Slip Layering</td>
<td></td>
</tr>
<tr>
<td>Slip Resist Techniques</td>
<td></td>
</tr>
<tr>
<td>Slip Texturing</td>
<td></td>
</tr>
<tr>
<td>Slip Stamping</td>
<td></td>
</tr>
<tr>
<td>Pate-sur-Pate (Paste-on-Paste)</td>
<td></td>
</tr>
<tr>
<td>Terra Sigillata</td>
<td>141</td>
</tr>
<tr>
<td>Initial Settling</td>
<td></td>
</tr>
<tr>
<td>Decanting the Suspension</td>
<td></td>
</tr>
<tr>
<td>Concentrating the Terra Sigillata</td>
<td></td>
</tr>
<tr>
<td>Application and Desired Specific Gravity</td>
<td></td>
</tr>
<tr>
<td>Polishing Terra Sigillata</td>
<td></td>
</tr>
<tr>
<td>Firing Temperatures</td>
<td></td>
</tr>
<tr>
<td>Coloring Terra Sigillata</td>
<td></td>
</tr>
<tr>
<td>Working with Colored Clays</td>
<td>145</td>
</tr>
<tr>
<td>Basalt Body</td>
<td></td>
</tr>
<tr>
<td>Clay Marquetry</td>
<td></td>
</tr>
<tr>
<td>Clay Murrini</td>
<td></td>
</tr>
<tr>
<td>Lamination of Colored Clays</td>
<td></td>
</tr>
<tr>
<td>Marbleized and Grained Colored Clays</td>
<td></td>
</tr>
<tr>
<td>Neriage</td>
<td></td>
</tr>
<tr>
<td>Nerikomi</td>
<td></td>
</tr>
<tr>
<td>Sprigged Colored Clay</td>
<td></td>
</tr>
<tr>
<td>Swirlware</td>
<td></td>
</tr>
<tr>
<td>Chapter 6: Glazes and Glazing</td>
<td>150</td>
</tr>
<tr>
<td>Introduction to Glazing</td>
<td>151</td>
</tr>
<tr>
<td>Approaching Glaze Design</td>
<td>152</td>
</tr>
<tr>
<td>Color</td>
<td></td>
</tr>
<tr>
<td>Transparency and Surface</td>
<td></td>
</tr>
<tr>
<td>Visual Texture</td>
<td></td>
</tr>
</tbody>
</table>
Glaze Firing Ranges .. 154
Referring to Glazes by the Firing Cone
Very Low-Fire
Low-Fire
Low-Mid-Range
Mid-Range
High-Fire
Multi-range Firing

Glaze Variations by Design and by Accident 156

The Choice of Whether to Buy or Mix Glazes 156

Organizing Glaze Recipes: Ceramic Glaze Calculation Software 157

Converting Glaze Recipes to Standardized Form 158

Mixing Glazes ... 158
Accurately Measuring and Reproducing Glaze Density
Using a Triple-Beam Gram Scale

Glazing Methods .. 161
What to Do About Badly Settling Glazes
Contamination of Glazes
Wax Resist for Footrings
Use of Alumina Wax
Glaze Consistency and Thickness of Application
Glaze Effects Resulting from Thickness of Application

Oxidation and Reduction Glazes 164

Oxide Washes/Patinas 165

Glaze Application .. 166
Brushing and Sponging Glazes
Dipping Glazes
Pouring Glazes
Spraying Glazes
Overlapping and Applying Multiple Glazes

Glaze Resist Decoration 171
Wax/Glaze/Oxide/Stain Mixtures

Dealing With Surface Flaws and Powdery Glazes 172

Multi-Firing, and Reglazing Glaze Fired Wares 173

Checklist of Guidelines for Glazing 174

Commercial Glaze Products 175
Underglazes
Ceramic Stains
Lowfire Commercial Glazes
Midrange and Highfire Commercial Glazes
Lusters
China Paints (Overglaze Enamels)

Glazes: The Technical Side 177
The Basics of Ceramic Chemistry
Elements, Atoms, and Atomic Weights
Simple and Compound Molecules, Molecular Formulas
The Beginning of Thermochemistry: Dissociation to Oxides
Oxides in Oxidation and Reduction
Oxides in the Fired Clay or Glaze

Categorization of Ceramic Raw Materials 180
What Is Glaze? .. 181
Functional and Decorative Variables in Glazes 181
Variables in Application and Handling of the Unfired Glaze 182
Variables in the Utility and Durability of the Fired Glaze—
Thermal Expansion And Glaze Fit 183
An Easy Test for Glaze Fit ... 183
Variables in Appearance and Feel of the Fired Glaze 183
Heat Reactions and Physical Properties in the Maturing Glaze ... 184
Glaze Maturation
Reactions and Physical Properties as the
Glaze Starts to Cool ... 187
Components of a Glaze ... 188
Ceramic Oxides and the Seger System 188
Stiffeners—the R₂O₃ Group
Raw Materials Contributing Alumina
Anomalies in the Stiffener Group
Glass formers—the R₂O Group
Raw Materials Contributing Silica
Anomalies in the Glass former Group
Fluxes—the RO Group
Barium
Strontium
Other Fluxes
Zinc
Iron
Glaze Modifiers ... 193
Matting Agents
Opacifiers
Primary Raw Materials Variations in Glazes for Different Firing Ranges . 194
Adjusting the Qualities of a Glaze 194
Color in Glazes .. 195
Coloring Oxides ... 195
Common Traditional Glazes .. 196
Glaze Faults ... 201
Unwanted Opacity or Surface Mattness
Glaze Problems Associated With Glaze Fit
Testing Glaze Materials and Glazes 204
Making Test Tiles
Testing Glaze Hardness
Testing Durability of Fired Wares
Using Ceramic Calculation Software, Unity Formulas, and Limit Formulas ... 206
Comparing to Known Glazes
Comparing to Limit Formulas
Changing Fluxes for Variations in Surface and Color Effects
Changing Clay Amounts for Raw Glaze Performance
Changing Maturing Temperature
Changing Surface Quality
Chapter 7: Kilns and Firing .. 208

What is a Kiln? .. 209
At What Temperature Do We Fire Clay? 209
What are Pyrometric Cones and Pyrometers? 209
Firing Ranges .. 210
Categorization of Kilns ... 211
 Access or Door Type
 Firing Cycle
 Roof System
 Refractory Type
 Power Source or Fuel Type
 Draft System
 Burner System

General Kiln and Firing Practices 213
 Firing Logs
 Ventilation
 Don’t Burn Yourself!
 Opening Hot Kilns
 Care of Refractory Surfaces

Preparing Kilns .. 214
 Electric Kiln Preparations
 Gas Kiln Preparations
 Kiln Furniture and Shelves
 Other Kiln Furniture—Kiln Posts and Shims
 Cleaning Shelves and Applying Shelf Wash
 Using Cone Packs
 Making Proper Cone Packs

Loading Kilns .. 217
 Selecting and Placing Kiln Furniture
 Loading a Bisque Firing
 Loading a Glaze Firing
 Firing Clay and Glaze: Chemical and Physical Changes
 Escaping Water
 Combustion of Organics
 Visible Red Heat and the Beginning of Sintering
 Oxidation and Reduction
 The Water Smoking Period
 Black Body Radiation
 Quartz Inversion
 Body Reduction
 The Limits of Lowfire
 Vitrification
 Glaze Maturation

Firing Ramps .. 221
 Bisque Firing Ramp
 Ramping Up from Preheat
 Glaze Firing Ramps
 Cooling Rates

Heat and Combustion ... 223
 The Sources and Effects of Heat
 Energy and Heat Units—BTUs
 The Combustion of Fuels
Surface Exposure and Energy Release ... 224
Firing Gas Kilns—Controlling Heat and Atmosphere 224
 Making the Best Use of Heat—Convection Currents,
 Back Pressure, and Heatwork in Fuel Kilns
 Controlling Atmosphere in Fuel Kiln for
 Efficiency and Visual Effect
 How Do We Determine and Control Atmosphere in Fuel Kilns?
 Determining Firing Atmosphere
 The Firebox—The Heart of a Fuel Kiln
 Primary and Secondary Air
 Gas Burner Flame Shape, Flame Path and the Combustion Zone
 What is Streaming?
 Controlling Temperature and Atmosphere in Gas Kilns
 Controlling and Correcting Distribution of
 Temperature and Atmosphere in Gas Kilns
 How Do We Use Oxidation and
 Reduction Through the Firing in a Fuel Kiln?
 Reduction Cooling
Specialized Firing Processes ... 228
Bonfire Firing ... 228
 How to Do a Bonfire Firing
 Selecting the Clay and Preheating or Bisquing the Wares
 Selecting and Preparing the Fuel
 Firing the Wares Directly in the Bonfire
 Pit Firing
 Bonfiring with a Grate, Cage, or Drum
 Stacking and Covering the Wares
 Kindling the Bonfires
 The Oxidizing Bonfire
 The Blackware Bonfire
 Cleaning the Wares
 Post Firing Polishing
Sagger Firing ... 231
Atmospheric Firing ... 232
 Salt Firing and Soda Firing
 Wadding, Shelf Wash, and Door Sealing Mixture
 Making and Using Draw Rings
 Loading Salt or Soda Kilns, Wadding Furniture and Wares
 Issues of Toxicity in Salt/Soda Firing
 Regulating the Damper While Charging Salt or Soda
 Charging the Kiln
 Charging a Salt Kiln
 Charging a Soda Kiln
Single firing ... 236
Wood Kilns and Wood firing ... 237
 The Coal Bed, Heatwork, and Breathing Cycle Stoking
 Efficient Combustion with Wood
 The Woodfired Effect—Fly Ash and Flashing
 Air Ports
 Types of Wood Fireboxes
 Grate Systems
 The Integral Firebox
 The Bourry Box
Small Wood Kilns
Whether to Clamp or Crash
Choice of Wood Type and Size
Wood Kilns and Air Pollution

Electric Kilns ... 242
Electric Heating Elements
Reduction Firing in an Electric Kiln
Non-Programmable Electric Kilns
Programmable Control Systems
Electric Kiln Venting Systems
Kiln Wall Thickness/Construction and Temperature Rating
Element Support Systems
Installation Requirements for Toploader Electric Kilns
Heavy-Duty Industrial Electric Kilns
Purchasing a Used Electric Kiln

Gas Kilns ... 245
Kiln Proportions
Commercially Made Gas Kilns
Gas Kiln Installation
Venting Fuel Kilns
Venting Updraft Kilns
Venting Downdraft Kilns

Burner Systems ... 248
Gas Burner Ignition and Safety Systems
Baso Safety Systems
Disadvantages of the Baso Safety Shutoff Valve
Fireye Flame Rectification Safety Systems
Gas Line Pressure: Variations and Measurement

Refractory Materials Used in Kiln Construction 252

Sprung Arch Gas Kiln Construction
from the Ground Up ... 254
Kiln Dimensions
The Kiln Foundation and Base
The Kiln Floor
Brick Wall Construction
Burner Ports, Flue Opening, and Charging Ports
Burner Placement: Fireboxes and Bag walls
Steel Support Framework
Building a Sprung Arch
The Arch Form
Laying a Sprung Arch
Insulating and Reinforcing the Arch

Building the Chimney on a Downdraft Kiln 261
Chimney Size, and Design/Placement of the Damper
Door Construction ... 263
 The Stacked Door
 The Rollaway Door
 The Hinged Door
 Making Spyholes

Gas Plumbing .. 264
 Mounting Burners on the Kiln

Chapter 8: Mixed Media in Ceramics 266

Chapter 9: Studio Safety and Sensible Studio Practice 281
 Studio Safety Checklist ... 281
 Toxic and Hazardous Materials in Clays and Glazes 281
 Skin Protection .. 282
 Using Hot Wax .. 282
 Disposing of Toxic Materials 282
 Dust/Dirt Management .. 282
 About Dust Masks
 Floor and Surface Cleaning
 Dust in Handling Clay and Glaze Materials
 Dealing with Dust While Grinding and Cleaning Wares and Kiln Furniture
 Stationary Dust Filters in the Studio

Other Studio Health Issues .. 285
 Avoid Wet Floors
 Repetitive Motion Disoders; Carpal Tunnel Syndrome
 Taking Care of Your Back
 Skin Care
 Lighting

Equipment Safety ... 286
 Leave Machinery in Proper Shutdown Condition
 Safety with Kilns and Firing

Appendix I: Glossary of Terms 287

Appendix II: Glossary of Ceramic Raw Materials 303

Appendix III: Repairing, Fastening, and Mounting 309

Index ... 312
Marty Fielding’s Mixing Console 2014, 16 inches in length, handbuilt cone 3 red clay and slip cast cone 03 earthenware, terra sigillata, underglaze, glaze, oxidation fired. Fielding says, “I seek harmony in my surroundings, moments of respite from the rush and concerns of daily life.” Photo: Marty Fielding
In contemporary clay we are easily seduced by the wonderful abundance of tools and equipment available, but consider that the most effective and beautiful ceramic sculpture and vessels through history were often created with nothing more than human hands and a few simple handmade tools. It is particularly instructive and humbling to observe the art and craft of tribal cultures, where the tools may be primitive, but design and craftsmanship are as sophisticated as anything the industrialized world can offer.

A common assumption holds that the potter’s wheel is the standard method of hand making utilitarian vessel forms, but through history most vessels were handbuilt off the wheel. The potter’s wheel did not appear until 4500 years ago in the Middle East, 3000 years ago in East Asia, and in the Americas only when introduced by Europeans less than 400 years ago. Handbuilding processes are preferred in many ancient ceramics traditions still vital and active today, including Southwest Native American cultures.

Handbuilding has earned an equal share of attention in contemporary studio clay, and in academia has clearly dominated and in many cases supplanted the wheel. Handbuilding offers unlimited possibilities in structure and surface impossible or impractical on the wheel, and allows construction of almost any imaginable shape. Handbuilding processes are divided into four categories: pinch, coil, slab, and solid construction.

Pinch and coil methods are prevalent in ancient and tribal cultures. Slab construction was widespread in Mesoamerican Pre-Columbian cultures, but otherwise is rarely found until modern times. Pinch construction is by far the simplest, and provides an ideal introduction to other ceramics forming methods. Pinch forms are usually confined to less than 6 inches in diameter, although there are exceptions as in the fine work of Michael Imes. Pinch forms can be very thin and delicate or thick and substantial. There is something very special about an eggshell-thin pinched form that is sanded, coated with terra sigillata, and polished to a satin luster.

Coil forms can take almost any shape imaginable. Coiling is the only method where novices can quickly learn to make very large vessels or sculpture, an experience that rapidly builds confidence in clay working. Coiling is especially appropriate for organic forms, large volumetric vessels, and some kinds of figurative sculpture.

Clay slabs can be formed and assembled in either soft slab or stiff slab method, indicating the condition of the slab while being worked. Soft slabs are ideal for curvilinear and organic forms, and can be slumped, draped, or soft formed to quickly create small sculpture and vessels, or shaped into component parts and assembled into larger forms when leatherhard. The stiff slab method is ideal for rectilinear and architectural form, and the two approaches are often combined, as when parts are soft formed and then assembled when leatherhard.

Solid forming is popular for sculptural work when it is advantageous to aggressively manipulate the clay additively and subtractively from the outside, as in the animal sculptures of Beth Cavener. Such work is generally cut apart when leatherhard, hollowed out, and reassembled.

This chapter includes detailed instructions for all of these techniques. While exploring and applying this information, remember that capability in handbuilding is largely dependent on your own sense of invention. Ignore the pessimists who say it’s all been done before, because human ingenuity for all its wonder has barely scratched the surface of creative possibility. We clearly see this in the amazing diversity of materials, technique and expression in contemporary art, with so much that is fresh and new.

Clay Preparation: Clay Consistency and Wedging

Never settle for clay that is too wet or too dry—it simply isn’t worth it. Excessively wet clay won’t hold its form, but can be wedged on a dry plaster slab or cut into slices or formed into arches standing vertically to stiffen quickly. Stiff clay doesn’t respond well and taxes your muscles, but can be covered with soaking wet rags in a bag or barrel overnight to soften, rewetting if necessary. Mixing clay in quantity allows it to age, improving workability, but that only works if you carefully monitor its condition and maintain an ideal working consistency.
Cylinder wedging: Place hands on either side of the lump in handshaking position.

Lean into the lump.

Continue leaning into the lump, smearing the lower portion against the wedging table.

Roll the top of the lump directly up towards you, grasp the sides with your hands.

Lean into the lump again, roll it back towards you, and repeat.

Continue until the lump is well blended and shows this appearance.

Proper preparation of plastic clay by wedging or pugging in a de-airing pugmill is important in all ceramic techniques. Poorly prepared clay does not respond well and tends to tear and crack. Every air bubble provides the beginning of a fracture or separation. Wedging clay or pugging in a de-airing mill mixes and homogenizes the clay and eliminates air. For either of the wedging methods explained below, start with a ball of clay the size of a large grapefruit and place it in front of you on a flat surface, preferably a sturdy, immovable plaster or concrete surface or canvas covered wedging table. Effective and efficient wedging makes use of muscles in your back, hips, and legs, but this requires a bench or table at the proper height. Stand straight with your arms hanging relaxed at your sides and your fingers bent. Your knuckles should barely touch the wedging surface.

Different clay bodies can be blended through wedging. Colorants, sand, grog, nylon fiber, or paper pulp may be introduced, however if that is the objective it’s usually best to start with the stack and slam method, explained below.

Ram’s Head Wedging

When first learning to wedge, the ram’s head technique is generally easiest. The name is derived from the appearance of the resulting lump of clay, which looks like a ram’s head with the spiral of clay on either end vaguely resembling curved horns. Hold both hands as you would to shake hands with someone, and grasp the ball of clay firmly with your hands wrapped around either side as indicated in figure 2.1. Apply pressure downwards against the table as you push the ball away from you three or 4 inches without allowing it to roll, causing the underside to smear back against the table. Roll the ball back towards you, standing it up on the smeared “extension,” grab again on either side, and push down and away as before. As you repeat this and the lump takes on a cylindrical shape, be sure to grasp it by the ends and not from above, because that will fold the clay upon itself, trapping air and defeating the purpose. Repeat this at least twenty times for each lump of clay. Thorough wedging creates a spiral twisting and stretching throughout the lump, homogenizing any irregularities in composition or moisture content and eliminating air bubbles.

Some people make a comparison to kneading bread dough, but wedging is an entirely different process because the objective is to eliminate air. Each push should smear the lower portion of the lump without introducing air into the clay. With proper pressure from each end during ram’s head wedging the cylindrical lump should maintain its size and shape. If you find the lump elongating to either side
as you are learning the technique, slap your palms against the ends to narrow it.

Cone or Spiral Wedging
When you are comfortable with cylinder wedging you may wish to move on to cone or spiral wedging, which is more effective and can accommodate larger quantities of clay at a time. When learning the process, start with a ball of clay slightly tapered into a cone shape of equal height and width. Once accustomed to the method you'll begin with a plain lump or ball, but initially it helps to start with a rough cone. Lay the cone on its side, with the flat end facing right and slightly away from you, and the point of the cone facing left and slightly towards you. Place your right hand over the flat end of the cone, and your left across the upper part of the curved side. Push as above so that the bottom surface of the cone smears a little, especially at the point on the left. Roll the lump towards you so that it is standing on the smeared “tail,” and push again, as is shown in figure 2.2. Each time you push, the tail of the cone will extend primarily from the pointed end at the left, and as you wedge repeatedly will slowly migrate around to the rim of the flat end on the right. The effect is that the clay is very efficiently circulated throughout the lump in a continuous spiral pattern. With practice, each time you release pressure the lump will roll towards you so that it appears to bounce off the wedging surface. When novices see this done by an experienced clay worker it seems as if the lump is bouncing like a rubber ball.

Stack and Slam Wedging
The stack and slam method is especially suitable for those who experience muscle and joint problems with the above wedging methods, and is by far most effective for blending clays of different composition or moisture content and for introducing other materials into the clay. This method
The potter's wheel appeared in Palestine 4500 years ago as an elaboration of the simple turntable, providing mechanical rotary motion to facilitate forming clay vessels. Until then all clay forms were handbuilt by pinch, coil, or solid-modeling methods. Many Third-World and tribal cultures today still prefer handbuilding, and the work often shows a compelling organic asymmetry. Classical notions of beauty associated with symmetry and physical perfection affect so much in our culture, but even when handbuilders produce smooth, symmetrical vessels, there is always the essential slight irregularity or asymmetry that provides character and evidence of process.

In the modern age, machines and technology easily seduce us. Propaganda of the Industrial Revolution pushed the myths that machine made is better than handmade, and that factory goods are reliable and consistent while handmade goods are unreliable and irregular. This was a clever and completely misleading marketing ploy, and in truth aficionados of fine art/craft have always appreciated the variability and originality of handmade objects that cannot be duplicated in factory production. In consideration of these things, it’s amazing how often clay students assume that the potter’s wheel by its nature is intended to produce mechanical symmetry, and that greater precision is necessarily a noble and logical objective. While that may be worthwhile in skill building, it’s only logical if symmetry and precision conform to your personal preference. Much of the finest contemporary wheel thrown work is “thrown and altered” and quite fluid, gestural, and asymmetrical.

Whether for sculpture or functional vessels, the wheel is often best used as a tool for making component parts assembled off the wheel to create distinctive and inventive forms, often combined with handbuilt parts. The wheel excels for making hemispheres, spheres, ovoids, flat and concave/convex disks, cylinders, cones, tubes, and a myriad of other shapes that can serve as component parts in handbuilding. Contemporary ceramics is wide open, with unlimited possibilities for innovative experimentation and expression in vessels and sculpture. Do not succumb to popular rhetoric limiting the role of this medium or the potential of the wheel.

Of clay forming methods employed to produce items that can truly be called handmade, the wheel is most efficient. That can offer tremendous advantages as long as you remain in control. Even in many cultures with long-standing pottery traditions, mastery of the wheel simply gives license to alter the form on or off the wheel. Considered this carefully, and don’t allow the limitations or possibilities of the wheel to subvert you from your natural artistic inclinations. Some of the most exciting wheel thrown work today is done with soft clay on a slow wheel, giving in an organic immediacy and irregularity of form and surface that become a record of the movements and processes invested in creation of the work.

Learning to throw requires a great deal of practice and skill development, and there are no shortcuts other than frequently reviewing the following suggestions and guidelines. Read and reread the information carefully to absorb the important steps and ensure that you are not overlooking important parts of the process. There are so many separate steps and details to keep track of as you learn to throw, and committing this information to memory will ease you into the process far more gracefully. For best results and quick progress, spend several hours a day at the wheel. The speed and efficiency developed by diligent and repetitive practice is essential in learning to throw. This is not specifically about production, although that may be your objective. Learning to throw quickly and efficiently allows you to create the forms you want before absorption of water renders the clay unworkable.

For those new to throwing, I recommend that you adhere closely to the guidelines and suggestions below. Once you develop some proficiency, start improvising technique, and at that point anything is fair game. Every person’s inclinations and body geometry are a little different, and no matter how you are taught initially, much of what you ultimately learn is by the seat of your pants. Study the techniques as they are explained and try to follow the directions carefully, but as your skills increase, be ready to adapt your methods when you find a better way of doing something.
Throwing Right-Handed vs. Left-Handed
Traditional Japanese potters throw with the wheel turning clockwise, while in the West we throw counterclockwise. The decision should have nothing to do with whether you are right-handed or left-handed, because throwing requires manual dexterity and control with both hands, and it matters little which tasks are done with which hand. If you are left-handed, you have nothing to gain by learning to throw completely backwards from everyone else.

Wedging and Preparing Balls of Clay
Successful throwing requires properly prepared clay, and the first step is thorough wedging. See the section on wedging in the chapter on handbuilding. Wedge plenty of clay, and divide into fist-sized balls. When learning to throw, always sit down at the wheel with at least a dozen balls of clay. You must abandon the preciousness of the individual piece. Starting with only a few balls of clay encourages an unconscious determination to make every piece a success and thus an unproductive tendency to overwork the clay. Keep working on a piece if things are going well, but the instant it starts to go bad, scrap it and start another. You will accelerate the learning curve and accomplish far more.

Clay Consistency
Don’t try to throw clay that is too hard or too soft. It’s impossible to describe the ideal consistency, but as a general rule the clay should be soft and plastic but never so much that some of it sticks to your hands when tossed back and forth. You’ll quickly learn the ideal clay consistency. Clay slightly on the stiff side may seem more manageable for the beginning thrower, but it’s an illusion. You really are better off with soft clay. Stiff clay is unresponsive and can be hard on you physically over time, especially when throwing larger forms. Clay that is too soft absorbs water faster and will not maintain physical structure.

Experiencing with clay of varying consistencies and continue to experiment as your throwing skills improve. Very subtle differences in consistency will significantly impact performance on the wheel. For the experienced thrower, well-aged clay slightly on the soft side is very responsive, and if thrown quickly will maintain its physical structure.

Centering
The purpose of the centering process is to shape and compress the clay in a smooth, symmetrical mass perfectly centered on the wheel head or bat. Proper centering is essential to good throwing. Clay sticks best to a surface slightly damp but not wet. Squeeze water over the wheel head or bat, scrape off any clay residue, and squeegee off all water with a stiff rubber rib. If the surface is slightly rough, as with a weathered wood bat, use an old towel to absorb excess moisture left by the rubber rib.

Slap a ball of clay down in the center of the prepared wheel head or bat. Rotate the wheel slowly and slap the clay from both sides (figure 3.2) to roughly center the ball and seal down the lower edges. You can greatly simplify the wheel centering process by slap centering before you apply water.

Correct Position for Centering
Effective centering utilizes the weight of your upper torso and the powerful muscles in the hips and back rather than muscular strength in the arms. Move your stool very close to the wheel head as shown in figure 3.1. Before starting the wheel, try the following movements to assure that your position is correct. Hold both hands as you would when shaking hands with someone but with your wrists pressing together at the base of the thumb. Throughout the centering and coning process, pretend that your hands are permanently connected at the base of the thumb. Your hands can hinge and swivel at this point, but they should remain firmly connected in order to give the appropriate stability and cross bracing. See the series of images in figure 3.3.

Bend your right hand back at the wrist, and wrap your fingers loosely around the slap centered lump. Lay the base and first joint of your left thumb across the top of the lump of clay, but do not allow the upper edge of either hand (at the base of the index finger and thumb) to close down against the clay, as this will apply excessive downward pressure and cause the lump to flatten against the wheel head when you begin centering. The primary force of centering is across the wheel head, not down against it. Maintain the openings at the upper edges of your hands so that you can see the lump of clay throughout the centering and coning process.

Maintaining this hand position, lean your right elbow into the crook of your right thigh where it meets your torso. If that feels very awkward, lean your right elbow against your right thigh a few inches from the hip joint. Lean your left elbow against the top or your left thigh. Lean down on both elbows with the weight of your upper torso, and roll your hips forward. This movement should force the base of your right palm (where it meets your wrist) against the lump of clay. The base of your right palm applies the primary force in this centering method. As long as your elbows are locked in place as described above and your hands cross-braced, you will have a great deal of force at your disposal by rolling your hips forward.
If you cannot get your right palm to apply a powerful force against the clay when you roll your hips forward, it indicates that you are not sitting close enough to the wheel head and/or you are not locking your elbows against your thighs. Practice this position and movement until you are comfortable with it.

When you are sure that your position is correct as described above, squeeze water over the lump, accelerate the wheel to high speed, and place your hands as described above with your hands pressed together at the base of the thumb to provide cross bracing. Anchor your elbows firmly, roll your hips forward and lean into the lump with the base of your right palm and press down across the top of the lump with the base and first joint of your left thumb. Be sure that you are bearing down upon your elbows to firmly lock them in place. This should prevent your arms from bouncing back and forth with the irregularity of the clay. If all goes well when you lean into the spinning clay, the irregular slap centered lump will transform into a smoothly centered mass.

As mentioned, the primary pressure in centering is across the wheel head rather than down against it, but some pressure from above with the left thumb is necessary to consolidate and center the top of the lump. Pressing down against the wheel head with the edge of your hands is wasted effort, and a gritty clay body can quickly erode through your skin.

Always maintain a fairly wide “footprint” at the base of the lump while centering. Avoid digging the lower edge of your hands into the base of the spinning lump, as this can cause it to come off the wheel. Throughout the centering/coning process maintain this same wide footprint.

Aside from purposefully altering or distorting a thrown form during or after the throwing process, try to avoid ever touching the clay unless the wheel is turning. Apply force to the clay only after the wheel is spinning, and always release pressure gradually while the wheel is still turning. Pulling your hands away suddenly will throw the lump off-center or damage the vessel. Similarly, stopping the wheel while you are applying force will distort the clay. For greatest control, throughout the throwing process always keep your hands cross-braced and your elbows anchored against your thighs or torso, with the exception of certain parts of the process you’ll learn later.

As you try to center, think about your body position, and watch to see if your forearms are moving back and forth. A little observation will show what needs to be corrected. If the process is done properly, with your elbows leaning firmly against your thighs and with the strength of your back and hip muscles behind the effort, you will be able to muster a very powerful force easily capable of centering soft, malleable clay.

If any flange of clay spreads out at the base of the lump during centering, it is the result of closing your hands down against the clay and applying too much force downwards against the wheel head. If this does happen, use the square corner of a wooden rib to scrape off this flange of clay before continuing with centering. Make sure that the primary force is across the wheel head, and ensure that you maintain the “hand shaking” position, with open spaces between the clay and the upper edges of your hands.

Always center at medium to high speed, and apply water as often as necessary to lubricate the clay. As your skill develops, try to complete the centering/coning processes as quickly as possible. This reduces the amount of water absorbed by the clay, retaining more structural stability. A very gritty surface during centering is usually the result of excessive water and overworking the clay. Aside from the unpleasant texture it doesn’t really hurt anything, and as your skill and speed increase this will no longer happen. Remember one of the cardinal guidelines: clay appreciates a vigorous commanding approach. Do not be afraid to push hard. The clay might push right off the wheel head, but you’ll learning something in the process.
Coning the Clay as Part of Centering

After hand wedging, the clay platelets are aligned in random “currents” throughout the lump. During the centering process as described above, those currents fight you and mass of clay feels slightly lumpy or irregular. This is because you are only centering the outside surface, while the platelets within are still in random currents. The coning process in effect twists the lump all the way through to its core, aligning the platelets in symmetrical spiral currents ideal for throwing. The term refers to repeatedly raising the clay in a cone shape and pushing it back down, always maintaining the same footprint at the base.

Coning should be done at medium to high speed with frequent water lubrication. After the clay is partially centered, continue to apply the same forces, pressing against the lump with the base of your right palm while keeping the ball and first joint of your left thumb across the top applying a little downward pressure to maintain a slight domed top. While maintaining those forces, slowly hinge your hands together and lift simultaneously as indicated in figure 3.3. As explained above, keep your hands connected at the balls of your thumbs throughout the centering and coning processes.

As you cone the clay upwards, continue to maintain moderate pressure with your left thumb across the top of
Every day, ceramic artists encounter techniques, processes, materials, and problems that leave them with questions such as: How? What? Why? Where?

Clay: A Studio Handbook, by Vince Pitelka, answers those questions with authoritative, comprehensive coverage of topics ranging from materials, studio safety, making and improvising tools, equipment firing processes and theory, and much more!

This second edition of a classic includes updated information, plus full-color images of work by contemporary artists to illustrate the techniques and concepts throughout the book. Drawing on more than 40 years of experience in ceramics, Pitelka has created the most practical, all-inclusive studio handbook for students, studio artists, educators, and all those interested in the art of clay.

Ten chapters, addressing the full range of ceramic processes, bring a lifetime of ceramic knowledge directly into the hands of potters. Written with concern for safe and efficient studio operation, diligent attention is paid to safety practices. A thorough table of contents, glossary, and index make finding answers quick and convenient. Numerous step-by-step illustrations guide readers through the many techniques. Whatever your involvement with clay and the clay arts, *Clay: A Studio Handbook* belongs in your library or studio. This is a book you will use over and over again!