OXIDE REFERENCE

Aluminum Oxide (Alumina) \(\text{Al}_2\text{O}_3 \)

Refractory / Stabilizer

Melting Point: 3722°F (2050°C)

Main Characteristics: Increases viscosity (stiffening), reduces fluidity and stabilizes the surface; without alumina the glaze will run off the pot (crystalline glazes); primary source of durability in glazes; controls the temperature of glaze melt

Color Response: Makes dull grayish colors; keep alumina low to get the best color response from alkali glazes (like copper reds)

CTE: Very low

Surface tension: Very high; too much alumina in a glaze can cause pinholes

Volatizes: No

Sources

Insoluble: Kaolin/clay, feldspar, frit, alumina hydrate, alumina oxide, etc.

Soluble:

Toxicity: No

Examples: Alumina mattes

Barium oxide \(\text{BaO} \)

Alkaline Earth Metal

Melting Point: 3493°F (1922°C); \(\text{BaCO}_3 \) starts to decompose at 1652°F (900°C) with reduction

Main Characteristics: Develops satin matte surfaces but with vivid colors; good flux at higher temperatures; forms eutectic with boron oxide which may cause running; barium carbonate is used in earthenware clay bodies to stop scumming
Color Response: Very bright; intensifies all colors; produces brilliant copper and cobalt colors; mottled, streaky satin surface

CTE: Moderate

Surface tension: Moderate

Volatizes: No

Sources

Insoluble: Barium Sulfate

Soluble: Barium carbonate (slightly soluble), frits (slightly soluble)

Toxicity: High (barium carbonate used in rat poison)

Examples: Barium blues

Boron Oxide B_2O_3

Glass former and flux [Exception to the rule – Fits in several categories; powerful flux, looks like refractory (R_2O_3) but is a glass former.]

Melting Point: No melting point but a melting range from 572°F–1292°F (300°C–700°C)

Major Characteristics: Very useful and powerful flux at all temperatures; used in low-fire glazes including raku (cone 020 – 012)

Color Response: Similar to alkali fluxes; makes intense colors; milky, streaky blues with mottled and broken surfaces

CTE: has a very low CTE (less than 10%), which stops crazing but higher amounts may cause crazing

Surface tension: Low

Volatizes: No

Sources

Insoluble: Frits (slightly soluble)

Soluble: Borax, gerstley borate, colemanite, ulexite, Gillispie borate, Laguna borate, etc.

Toxicity: No
Examples: Blue flushing Milk Gloss 50/30/20 glaze (cone 6-8):
50 Gerstley Borate/or substitutes
30 Silica
20 Kaolin

Calcium oxide CaO

Alkaline Earth

Melting Point: 4658°F (2570°C); begins to melt 2012°F (1100°C)

Main Characteristics: Most dependable flux at all temperatures; lends hardness and durability and resistance to abrasion

Color Response: Low with most colorants; slight bleaching effect on iron

CTE: Intermediate

Surface tension: High

Volatile: No

Sources

Insoluble: Whiting is the major source (slightly soluble in water), dolomite, wollastonite, limestone, sea shells.

Soluble: Gerstley borate, Bone ash (natural and synthetic)

Toxicity: No

Lithium oxide Li₂O

Alkaline Metal

Melting Point: 1472°F (800°C)

Main Characteristics: Is the lightest, smallest and most powerful flux; similar to sodium and potassium; can be used in large amounts at low temperatures; at high temperatures, too much will cause shivering.

Color Response: Adding 1% brightens most colors considerably, increases gloss; adding 3% can drop one cone in temperature; blues with copper and pinks with cobalt oxide.
CTE: It has a low expansion contraction; if lithium is high in a glaze, you must watch out for shivering.

Surface tension: Low

Volatile: No

Sources

Insoluble: Lithium feldspars, spodumene and petalite, frits (slightly soluble)

Soluble: Lithium Carbonate, most common source, slightly soluble in water.

Toxicity: Yes

Examples: Shinos,
Karen Starshine (Cone 10 Glaze)

Custer Feldspar 51
Soda Ash 4
Gerstley Borate 6
Whiting 13
Strontium Carbonate 4
Lithium Carbonate 1
Silica 21
Total 100%

Add:
Titanium Dioxide 2
Copper Carbonate 5
Bentonite 3

Magnesium oxide MgO

Alkaline Earth Metal

Melting Point: 5072°F (2800°C); begins to flux 2138°F (1170°C) and gets stronger as temperature increases; MgCO₃ lets go of carbon dioxide at 662°F (350°C)

Main Characteristics: Produces beautiful matt surfaces (Sometimes called fatty mattes); produces lichen glazes because of high surface tension; produces tea-dust (pyroxene crystals) type glazes
Color Response: Modifies color toward pastel; it is a bad choice for bright colors; gives lavender with cobalt.

CTE: Low

Surface tension: High (lichen and beads glazes)

Volatizes: No

Sources

Insoluble: Talc, dolomite, magnesium carbonate (slightly soluble), some earthenware clays.

Soluble: Epson Salts (magnesium sulfate)

Toxicity: No

Examples: Crawl or lichen glazes, tea-dust temmokus, satin whites.

Phosphorous Oxide \(\text{P}_2\text{O}_5 \)

Glass former

Melting Point: 1076°F (350°C)

Major Characteristic: good melter at mid-range and high fire. Used in bone china.

Color Response: Creates variegated and mottled effects; bluish flush in chuns; used in tomato reds

CTE: Moderate

Surface tension

Volatizes: No

Sources

Insoluble

Soluble: Bone Ash (natural), Synthetic Bone Ash (TCP – tri-calcium phosphate), wood and plant ash, etc.

Toxicity: No

Potassium Oxide \(\text{K}_2\text{O} \) (Kalium Oxide)
Alkaline Metal

Melting Point: 1382°F (750°C)

Main Characteristics: Strong alkaline flux similar to sodium and lithium; slightly less active flux than sodium oxide, but does not volatilize like sodium oxide: the two almost always occur together (KNaO)

Color Response: Adds brilliance and intensity although not as much as lithium: celadon iron blue glazes work best with potassium, as do temmoku and rust glazes, but they can be made with soda feldspars

CTE: Second highest expansion/ contraction; large amounts can lead to crazing

Surface tension: Low

Volatizes: No

Toxicity: No

Sources

Insoluble: Potassium Feldspars-Custer Feldspar, Cornwall Stone, G-200, G-200 HP (high potassium), Sodium Feldspars (all contain some potassium), Frits (slightly soluble), etc.

Soluble: Potassium carbonate (pearl ash), contains 68% potassium oxide

Examples: Blue Celadon, Temmoku

Silica SiO₂

Glass former

Melting Point: 3110°F (1710°C)

Major Characteristic: the most abundant element on earth and the most important glass-forming oxide; with alumina, helps control the maturing temperature of a glaze; gives rigidity and durability, as well as tensile strength and acid resistance to glazes

Color Response: Insignificant

CTE: Low CTE as a amorphous glass (when melted) but high when in crystal form (or as cristobalite)

Surface tension: Moderate
Volatizes: No

Sources

Insoluble: silica, sand, feldspar, kaolin, frit, talc, wollastonite, etc.

Soluble:

Toxicity: No, in a glaze but as a dust/powder – Yes!

Examples: Silica matte

Sodium oxide Na₂O (Natrium Oxide)

Alkaline Metal

Melting Point: 1652°F (900°C); begins melting around 1472°F (800°C)

Main Characteristics: Strong flux; similar to other alkaline fluxes, potassium and lithium, but slightly stronger flux than potassium

Color Response: Adds brilliance and intensity; strong color response; blues from copper, purples from cobalt and manganese and yellow or blue from iron

CTE: It has the highest coefficient of expansion/contraction of all fluxes; can result in crazing in glazes that are low in alumina and silica

Surface tension: Low

Volatizes: above 2192°F (900°C)

Toxicity: No

Sources

Insoluble: Soda Feldspars, (somewhat soluble), Potassium Feldspars (all contain some sodium), frits (somewhat soluble)

Soluble: Nepheline Syenite, Soda Ash, Sodium Bicarbonate, Borax

Examples: Carbon Trap Shino, Sodium Blue, Egyptian Paste

Strontium oxide SrO
Alkaline Earth Metal

Melting Point: 4406°F (2430°C); starts fluxing at 1994°F (1090°C); lets go of carbon dioxide at 1967°F (1075°C); can cause pinholing

Main Characteristics: adds strength and durability to glazes; good auxiliary flux at all temperatures but at low temperatures, should be supplied by a frit; used for micro-crystalline mattes

Color Response: Produces bright matte surfaces similar to barium oxide but with no known toxicity; slightly more intense than calcium

CTE: Moderate

Surface tension: Moderate

Volatile: No

Sources

Insoluble: Frit (slightly soluble)

Soluble: Strontium carbonate (slightly soluble)

Toxicity: No known toxicity

Examples: Strontium glaze

Tin oxide SnO\textsubscript{2} (Stannic oxide; Stannous Dioxide)

Opacifier

Melting Point: 2102°F (1150 °C) – Tin the metal melts at 450°F (232°C)

Major Characteristic: most common opacifier at 3 – 5%; twice as strong as zirconium opacifiers

Color Response: produces soft tin whites as opposed to refrigerator whites of zirconium; intensifies copper reds; chrome/tin pinks and burgundy at cone 6; can combine with other oxides produce unwanted effects, like copper pinks, chrome pinks, etc.; over-reduction at high temperatures causes it to lose its opacifying effect and gives speckled greys; at low temperatures gives tin lusters

CTE: Low
Surface Tension: Medium

Volatile: No

Sources

Insoluble: Tin oxide

Soluble

Toxicity: No

Examples: Majolica

Titanium dioxide TiO_2

Opacifier

Melting Point: 3326°F (1830°C)

Major Characteristics: Give opacity and soft crystalline matt; seed crystals in macro-crystalline glazes

Color Response: Makes milky blue/white flush, variegated and opaque surfaces; modifies colors from Cr, Mn, Fe, Co, Ni, etc.; gives yellows with iron

CTE: Medium

Surface Tension: Medium

Volatile: No

Sources

Insoluble: Titanium dioxide, rutile (dark), granular ilmenite and light rutile.

Soluble

Toxicity: No

Examples: Crystalline, Nuka like

Zinc oxide ZnO
Metal

Melting Point: 3587°F (1975°C) but Zinc the metal melts at 768°F (409°C); above 1742°F (950°C) zinc oxide can be reduced to Zinc the metal in reduction atmosphere and will volatilize as a gas.

Main Characteristics: Secondary/auxiliary flux, creates crystalline effects, lends strength, durability and some opacity to glazes; alternative to lead oxide.

Color Response: “Zinc makes ink” is the old time phrase potters often used but more appropriate is “zinc makes dramatic color response.” Either turns glazes brownish or brightens like in macro-crystalline glazes. Good with copper greens bad with chrome greens (turn them brown).

CTE: Medium to low

Surface tension: Medium

Volatizes: Yes

Sources

Insoluble: Zinc Oxide and Calcined Zinc Oxide

Soluble

Toxicity: Yes

Examples: Crystalline